Immunohistochemistry on cytology specimens from pleural and peritoneal fluid

Dr Naveena Singh
Consultant Pathologist
Bart health NHS Trust
London
United Kingdom
Disclosures and Acknowledgements

I have no financial disclosures.

I would like to acknowledge the use of images from *Diagnostic Cytopathology* and Professor Mike Sheaff, my colleague and co-author.
Learning Objectives

• Problems with pathological assessment of serous effusion fluids

• Role of immunohistochemistry; antibodies/panels useful in routine practice

• Common sense approach for safe reporting
Introduction

• One of the most challenging areas in cytology reporting

• One of the areas most dependent on good quality immunohistochemistry:
 – technical quality
 – interpretation
Anatomy of the serous cavities

- Cranial cavity
- Dorsal body cavity
- Vertebral cavity
- Thoracic cavity: Superior mediastinum, Pleural cavity, Pericardial cavity within the mediastinum, Diaphragm
- Abdominal cavity
- Pelvic cavity
- Ventral body cavity (both thoracic and abdominopelvic cavities)

Lateral view

Anterior view
Structure and function of mesothelium

- Mesothelium: Single layer of epithelioid cells on a bed of vascular connective tissue
- Submesothelial cells - progenitors of surface epithelioid cells; possibly the cells of origin of malignant mesothelioma
- Stroma with network of capillaries and lymphatics
Structure and function of mesothelium

Normal serous fluid production:
• Blood \rightarrow parietal stromal matrix \rightarrow mesothelial layer \rightarrow serous cavity

Normal serous fluid resorption:
• into capillaries of visceral serosa
• through stomata between mesothelial cells into lymphatics within the parietal serosa

Functions:
• Produce hyaluronate-rich fluid
• Facilitate transport of fluid and cells across serosal barrier

Also:
• Phagocytic function
• antigen presentation, inflammatory processes, coagulation, fibrinolysis, repair and tumour cell adhesion
Structure and function of mesothelium

Mesothelial lining cells

- Flat /cuboidal,
- Small to medium sized nuclei, small nucleoli
- Variable amounts of cytoplasm with luminal microvilli on the luminal
- Pinocytotic vesicles on both apical and basal sides of the cell
Histology of mesothelial cells - normal
Calretinin
Effusions

<table>
<thead>
<tr>
<th>Transudate</th>
<th>Exudate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein low <2.9g/dl</td>
<td>Protein high (>3g/dl)</td>
</tr>
<tr>
<td>Non-fibrinous</td>
<td>Fibrin present</td>
</tr>
<tr>
<td>Cell content low</td>
<td>Inflammatory/tumour cells</td>
</tr>
<tr>
<td>LDH low</td>
<td>LDH high</td>
</tr>
<tr>
<td>Specific gravity low <1.015</td>
<td>Specific gravity higher</td>
</tr>
<tr>
<td>Clear</td>
<td>Microorganisms or foreign material</td>
</tr>
<tr>
<td>Transudate</td>
<td>Exudate</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Common</td>
<td>Common</td>
</tr>
</tbody>
</table>
| Left ventricular failure
Liver cirrhosis
Hypoalbuminaemia
Peritoneal dialysis | Malignancy
Parapneumonic effusions |
| **Less common** | **Less common** |
| Hypothyroidism
Nephrotic syndrome
Mitral stenosis
Pulmonary embolism | Pulmonary infarction
Rheumatoid arthritis
Autoimmune diseases
Benign asbestos effusion
Pancreatitis
Post-myocardial infarction syndrome |
Histology of mesothelial cells - reactive
Cytology of mesothelial cells

- round with indistinct cell membranes and fuzzy borders
- single or clumped with so-called ‘windows’ between cells
- large round or elliptical nucleus, often centrally placed, with a single prominent nucleolus
- may contain two or multiple nuclei
- cytoplasm is green with Papanicolaou and blue with MGG
- 2-zone cytoplasm
- vacuoles due to ‘degeneration’ or pinocytosis or glycogen
Other cells in effusion fluid

- Macrophages
- Lymphocytes: T>>B
- Neutrophils
- Eosinophils
- Plasma cells
- Mast cells
- Megakaryocytes
Challenges in effusion cytology in the presence of malignancy

• Multiple causes of effusions; may be due to a co-morbidity, not the cancer
• May be first manifestation of malignancy
• Even when due to cancer, this may be due to
 – lymphatic blockage
 – Irritation of mesothelium
 – ie NOT tumour cell seeding
• Difficulties in interpretation
Challenges in effusion cytology

• Interpretation challenges
 – Reactive mesothelial cells can show a range of atypia: bi-/multinucleation, nuclear atypia, mitotic activity, large cell aggregates, vacuolation, gland-like arrangement

 – Malignant cells are altered in effusions
 • Polygonal shape
 • 3-D aggregates
 • Degenerative changes

 • Do not resemble the primary
 • Look similar irrespective of origin

 – Some types deceptively bland

 – Number of cells present in the fluid is highly variable
Role of immunohistochemistry

1. MALIGNANT OR REACTIVE?

- Dual population but only subtle differences or overlapping features
- Single population of only malignant cells without obvious cytological features of malignancy
- Isolated malignant cells in a vast reactive population
Malignant vs Reactive

<table>
<thead>
<tr>
<th>Mesothelial</th>
<th>Carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calretinin</td>
<td>B72.3</td>
</tr>
<tr>
<td>D2-40</td>
<td>BerEP4</td>
</tr>
<tr>
<td>CK 5/6</td>
<td>CD15</td>
</tr>
<tr>
<td>Vimentin</td>
<td>CEAm</td>
</tr>
<tr>
<td></td>
<td>EMA (cytoplasmic)</td>
</tr>
<tr>
<td></td>
<td>MOC31</td>
</tr>
</tbody>
</table>

- Use a panel including +ve and –ve markers
- CARE when interpreting which cells are positive for what: SCIP
Malignant vs Reactive Mesothelial

<table>
<thead>
<tr>
<th>Mesothelial</th>
<th>Carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calretinin</td>
<td>B72.3</td>
</tr>
<tr>
<td>D2-40</td>
<td>BerEP4</td>
</tr>
<tr>
<td>CK 5/6</td>
<td>CD15</td>
</tr>
<tr>
<td>Vimentin</td>
<td>CEAm</td>
</tr>
<tr>
<td></td>
<td>EMA (cytoplasmic)</td>
</tr>
<tr>
<td></td>
<td>MOC31</td>
</tr>
</tbody>
</table>

- Use a panel including +ve and –ve markers
- CARE when interpreting which cells are positive for what: SCIP
Malignant vs Reactive

<table>
<thead>
<tr>
<th>Reactive mesothelial</th>
<th>Mesothelioma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calretinin</td>
<td>Calretinin</td>
</tr>
<tr>
<td>D2-40</td>
<td>D2-40</td>
</tr>
<tr>
<td>CK 5/6</td>
<td>CK 5/6</td>
</tr>
<tr>
<td>Vimentin</td>
<td>Vimentin</td>
</tr>
<tr>
<td>EMA (negative/weak)</td>
<td>EMA (membranous)</td>
</tr>
<tr>
<td>Desmin (positive)</td>
<td>Desmin (negative)</td>
</tr>
</tbody>
</table>

Others: p53, bcl-2, Glut1
EMA: Strong membranous staining is typical in mesothelioma; Normal/reactive mesothelial cells: weak staining; Adenocarcinoma cells: diffuse strong cytoplasmic staining without membranous accentuation
Desmin: NEGATIVE in mesothelioma; positive in normal/reactive mesothelial cells
Role of immunohistochemistry

2. Determining primary site

General markers of malignancy and negative markers of mesothelial cells and macrophages

Specific markers for particular malignancies
Antibodies useful for determining site of origin in effusions

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>TTF-1, CD56, CK19</td>
</tr>
<tr>
<td>Ovary</td>
<td>WT-1 (also positive in mesothelial cells), ER</td>
</tr>
<tr>
<td>Gastrointestinal tract</td>
<td>CDX2, CK7/20, CA19-9, CEAm</td>
</tr>
<tr>
<td>Breast</td>
<td>ER, mammoglobin, CRx-A01,</td>
</tr>
<tr>
<td>Melanoma</td>
<td>S-100, HMB-45, melan A</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>CD3:CD20, other specific studies</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>Vimentin, other specific</td>
</tr>
</tbody>
</table>
Common Examples
Adenocarcinoma of lung:
TTF1 +ve
Small cell carcinoma of lung: TTF1 and CD56 +ve
Gastric signet ring carcinoma: CEA positive
High grade serous tubo-ovarian carcinoma
Pitfalls in interpreting IHC in effusions

- MIXTURE of cells: take care to report expression in the correct population; particularly in presence of low cellularity
WT1 expressed in mesothelial cells

TTF1 expressed in malignant cells
Pitfalls in interpreting IHC in effusions

• PATTERN of expression where appropriate
EMA expression patterns

Reactive mesothelial cells: weak diffuse cytoplasmic

Mesothelioma: Cytoplasmic with STRONG membrane accentuation

Adenocarcinoma: Diffuse strong cytoplasmic expression, obscures cellular detail
Question 1

• Which of the following markers would not be useful in distinguishing reactive mesothelial cells from metastatic adenocarcinoma?

1. MOC31
2. BerEp4
3. Calretinin
4. CK7
5. CK 5/6
Question 2

• Which of the following markers would not be useful in the diagnosis of mesothelioma?

1. MOC31
2. Actin
3. Calretinin
4. Desmin
5. EMA
Case 1: Pleural fluid in known case of lung cancer: reactive or metastatic?
General approach to reporting malignancy in effusions

- Only report when CERTAIN: malignancy is easy to overcall and undercall: err on side of caution
- Always rule out malignancy if there is a +ve history
- Always rule out malignancy if there is doubt on morphology
- Look at all preparations before issuing final report
- Use a PANEL of markers, not just one
- Take care when interpreting IHC as there is a mixture of cells present; coordinate approach on serial sections
 - Due regard to expression by different cell types, eg WT1
 - Due regard to different patterns of expression, eg EMA
- Asking for another sample is not unreasonable