

Assessors' report for cIQc Run 5: Breast module (ER, PR and HER2)

All participating laboratories received a single slide for each test. The results obtained on benign tissue only were not included for calculations of the laboratory success. Minimum concordance of 90% for both positive and negative results is suggested as "satisfactory". Minimum concordance of 95% is suggested as "optimal". The calculations for ER and PR were done using each laboratory result and following reference values:

1) *Consensus Results*: These are the results that majority of laboratories agreed upon. If the tissue core was missing for majority of laboratories, such tissue cores were excluded from calculations.

2) *Reference Laboratory*: The results of the reference laboratory for breast carcinoma markers in the United States.

3) *Reference Method*: The results obtained by the FDA approved kit for ER and PR immunohistochemistry. For HER2, the results of FISH were used instead. Kappa values were also calculated and summarized in Table 1 at the end of this document.

RUN5 was made possible due to the contribution of the Jewish General Hospital (JGH) in Montreal, Quebec. The RUN5 tissue microarray (TMA) comprising 44 different breast cancer cases from recent material from the JGH laboratory was constructed by Naciba Benlimame, PhD at the Research Pathology Facility, Segal Cancer Centre JGH under close supervision of Dr. Dragana Pilavdzic, staff pathologist at JGH and assistant professor at McGill University who is a cIQc assessor for type II immunohistochemistry (IHC).

Jewish General Hospital, Montreal, Quebec, Canada

Figure 1. ER garrattogram

Figure 2. PR garrattogram

Figure 3. HER2 garrattogram

	CORRECT RESULTS/CONCORDANCE (%) KAPPA-VALUE														2			
LAB	Consensus		Ref Laboratory		Ref Method		Consensus	Ref Laboratory	FISH	Consensus		Ref Laboratory		Ref Method		Consensus	FISH	LAB
	ER	PR	ER	PR	ER	PR	HER2	HER 2	HER2	ER	PR	101	PR	ER	PR	HER2	HER2	1
101	95	100	93	100	94	97	100	100	100	0.880	1.000	102	1.000	0.836	0.943	1.000	0.947	101
102	100	100	100	97	100	93	100	100	97	1.000	0.933	103	0.933	1.000	0.865	1.000	0.930	102
103	100	100	100	97	100	94	NA	NA	NA	1.000	0.943	105	0.945	1.000	0.881	NA	NA	103
105	95	86	95	86	94	86	100	100	100	0.870	0.719	106	0.734	0.815	0.703	1.000	1.000	105
106	100	100	100	100	97	100	100	100	97	0.939	1.000	107	1.000	0.820	1.000	1.000	0.942	106
107	100	94	100	94	97	91	100	100	100	0.939	0.886	108	0.886	0.820	0.830	1.000	0.944	107
108	97	97	95	97	97	100	100	100	100	0.941	0.942	109	0.994	0.837	1.000	1.000	0.947	108
109	100	97	100	97	100	94	100	100	100	1.000	0.942	110	0.994	1.000	0.885	1.000	0.942	109
110	92	100	90	100	91	100	97	97	94	0.829	1.000	111	1.000	0.697	1.000	0.940	0.879	110
111	100	97	100	97	100	94	100	100	100	1.000	0.945	112	0.947	1.000	0.885	1.000	0.942	111
112	100	97	100	97	97	94	100	100	100	0.934	0.943	113	0.943	0.904	0.876	1.000	0.945	112
113	100	97	100	97	97	94	100	100	97	0.939	0.945	114	0.945	0.820	0.881	1.000	0.940	113
114	100	100	100	100	100	97	100	100	97	1.000	1.000	115	1.000	0.904	0.937	1.000	0.937	114
115	100	100	98	100	100	97	100	100	97	1.000	1.000	116	1.000	1.000	0.943	1.000	0.947	115
116	100	100	100	100	100	97	100	100	97	1.000	1.000	117	1.000	0.890	0.944	1.000	0.942	116
117	100	100	97	100	100	97	100	100	97	1.000	1.000	118	1.000	0.915	0.943	1.000	0.941	117
118	90	94	88	94	86	91	100	100	97	0.772	0.878	119	0.878	0.700	0.819	1.000	0.942	118
119	100	95	100	95	100	92	91	89	88	1.000	0.894	122	0.897	1.000	0.832	0.767	0.719	119
122	100	97	100	97	97	94	NA	NA	NA	0.939	0.941	125	0.943	0.820	0.885	NA	NA	122
125	100	97	98	97	100	94	NA	NA	NA	1.000	0.943	126	0.944	0.915	0.889	NA	NA	125
126	100	100	100	100	97	97	100	100	100	0.939	1.000	128	1.000	0.820	0.944	1.000	1.000	126
128	100	97	98	97	100	94	NA	NA	NA	1.000	0.934	129	0.937	0.915	0.873	NA	NA	128
129	100	100	100	100	97	97	100	100	100	0.939	1.000	131	1.000	0.820	0.943	1.000	1.000	129
131	100	93	98	94	100	94	100	100	95	1.000	0.870	132	0.875	0.915	0.811	1.000	0.904	131
132	49	94	56	95	47	97	NA	NA	NA	0.239	0.889	132R	0.829	0.197	0.830	NA	NA	132
132R	89	NA	87	NA	86	NA	NA	NA	NA	0.759	NA	133	NA	0.673	NA	NA	NA	132R
133	93	100	90	100	92	97	100	100	97	0.833	1.000	134	1.000	0.703	0.943	1.000	0.933	133
134	100	97	100	97	100	94	100	100	97	1.000	0.944	135	0.944	1.000	0.885	1.000	0.933	134
135	98	97	95	97	97	97	100	100	97	0.942	0.943	140	0.945	0.837	0.885	1.000	0.937	135
140	97	97	95	97	97	94	100	100	97	0.940	0.870	141	0.875	0.832	0.811	1.000	0.935	140
141	85	97	83	97	83	94	NA	NA	NA	0.683	1.000	142	1.000	0.590	0.939	NA	NA	141
142	97	100	97	100	97	97	NA	NA	NA	0.921	1.000	143	1.000	0.817	0.939	NA	NA	142
143	97	100	97	100	97	97	NA	NA	NA	0.915	1.000	0.915	1.000	1.000	0.939	NA	NA	143

Table 1. Run 5 descriptive statistics